Instrucciones
Usted tiene las siguientes opciones en este simulador para moléculas pequeñas tanto inorgánicas como orgánicas.
- En la parte superior, aparecen los botones 2D y 3D para que pueda observar el modelo en dos o tres dimensiones.
- A continuación se presenta el modelo en dos o tres dimensiones.
- "Search" puede ser utilizado para buscar alguna molécula, escribiendo el nombre en inglés, por ejemplo al escribir, sulphuric acid (ácido sulfúrico).
- Color de fondo, sirve seleccionar el color del fondo del modelo en tres dimensiones.
- Acercar +, acerca el modelo.
- Acercar -, aleja el modelo.
- Girar X, Y, Z, para girar el modelo en tres dimensiones en los ejes x, y, z.
- Alambres, varillas y pelotas y varillas, para cambiar el modelo en tres dimensiones en esas representaciones.
- Energía, aparce en la parte superior la energía de la molécula en kJ/mol o kcal/mol.
- Minmizar por MMFF94, normalmente las estructuras iniciales que se crean en los simuladores poseen energías mucho mayores a las que tendría un objeto real, por esta razón, se utilizan algoritmos para calcular las posiciones y fuerzas originales, con el objetivo de minimizarlas y que sean más realistas.
- Arrastrar Minimizar, usted puede arrastrar un átomo, soltarlo y entonces el sistema hace un cálculo de minimización de energía.
- Simetría, muestra los planos de simetría en la molécula.
- Editar, puede editar la molécula agragando o quitando átomos y enlaces.
- Superficie VDW, la superficie de van der Waals de una molécula es una representación abstracta o modelo de esa molécula, que ilustra dónde, en términos muy generales, podría haber una superficie para la molécula en función de los cortes duros de los radios de van der Waals para átomos individuales, y representa una superficie a través de la cual la molécula podría concebirse interactuando con otras moléculas.
- PEM es el mapa de potencial electrostático.
- Carga parcial calcula la carga parcial de cada átomo.
- Tetraedros, para el caso que exista alguna átomo tetraédrico.
- Dipolos enlaces, para ver el los dipolos de todos los enlaces.
- Dipolo molecular, para ver el momento dipolar resultante de toda la molécula.
- Hibridación sp, sp2 y sp3, para ver la hibridacion del átomo de carbono.
- Anillo aromático, muestra los anillos aromáticos.
- Heteroátomo, muestra los heteroátomos en heterociclos.
- C quiral (nomenclatura R/S) y E/Z para isomería geométrica en alquenos, los descriptores R/S permiten indicar en un compuesto orgánico la configuración (la disposición espacial de los sustituyentes) de un carbono o centro quiral, estereocentro o centro estereogénico, que es el caso de un átomo de carbono con cuatro sustituyentes diferentes. Se añade R o S entre paréntesis como prefijo delante del nombre de la molécula orgánica. En caso de ser más de uno el centro estereogénico, separados por coma se indica el descriptor R o S de cada uno, precedido del número o localizador que identifica su posición.
- Invertir R/S, para cambiar la quiralidad.
- Nomenclatura E/Z en Alquenos, el sistema tradicional para nombrar los isómeros geométricos de un alqueno, en el que los mismos grupos están dispuestos de manera diferente, es nombrarlos como cis o trans. Sin embargo, es fácil encontrar ejemplos donde el sistema cis-trans no se aplica fácilmente.
- N electrones, O electrones y S electrones, para ver los electrones libres del nitrógeno, oxígeno y azufre.
- C primario, C secundario, C terciario, C cuaternario, identifica la clasificación de los átomos de carbono.
- Dadores y aceptores de puentes de hidrógeno, señala los átomos que pueden dar o aceptar puentes de hidrógeno
- Botón 2D, cuando escoge el botón 2D, la aplicación tiene su propio menú y quedan inhabilitados todos los botones 3D.
Aldehídos y Cetonas
Oxidación
Los aldehídos y cetonas tienen similitud estructural y por consiguiente, muestran propiedades químicas similares; sin embargo, difieren significativamente en una propiedad química —la susceptibilidad a la oxidación—. Esta reacción permite diferenciar los aldehídos de las cetonas. Los aldehídos se oxidan fácilmente a ácidos orgánicos con agentes oxidantes suaves. Bajo estas mismas condiciones de reacción las cetonas no se oxida.
Para oxidar los aldehídos a ácidos orgánicos, puede utilizarse cualquier agente oxidante como el permanganato de potasio (KMnO4). Un ejemplo de esta reacción de oxidación es la oxidación del formaldehído a ácido fórmico.
Oxidación del formaldehído
Oxidación de alcoholes
Prueba de Tollens
La prueba de Tollens es un procedimiento de laboratorio para distinguir un aldehído de una cetona: se mezcla un agente oxidante suave con un aldehído o una cetona desconocida; si el compuesto se oxida, es un aldehído, si no ocurre reacción, es una cetona. El complejo de plata amoniacal [Ag(NH3)2]+ en solución básica es el agente oxidante utilizado en la prueba de Tollens. Si hay un aldehído presente, éste se oxida a la sal del ácido RCOO-. Al mismo tiempo, se produce plata metálica Ag(s) por la reducción del complejo de plata amoniacal. La glucosa de la prueba positiva ya que tiene la función aldehído.
La plata metálica producida en esta reacción recubre la parte interna del recipiente y forma un espejo de plata.
Reacción de Tollens
Prueba para la glucosa
Formación del espejo de plata.
Reacción de Tollens con glucosa.
Prueba de Benedict
Otra prueba química que puede distinguir entre un aldehído y una cetona es la prueba de Benedict. En esta prueba el agente oxidante es una solución básica de Cu+2(ac); se adicionan iones citrato para evitar la precipitación del Cu+2 en la solución básica. El ion Cu+2 da a la solución de Benedict su color azul característico. Cuando el Cu+2 oxida un aldehído, gana un electrón y se reduce a Cu+, el cual se precipita como óxido de cobre (I), Cu2O, de color rojo ladrillo. Debido a su color rojo ladrillo el óxido de cobre (I) es fácilmente detectable. Los carbohidratos reductores también dan positiva esta prueba porque tienen el grupo aldehído libre.
Prueba de Benedict.
En el pasado la prueba de Benedict se utilizó rutinariamente en los laboratorios médicos para detectar la presencia de azúcar en la orina. Un ensayo positivo indica que los riñones han excretado el exceso de azúcar. Una elevada concentración de azúcar en la orina posiblemente podría indicar que el paciente es diabético o que tiene alguna otra enfermedad metabólica. Actualmente se utilizan tabletas, barras y papeles que contienen el reactivo apropiado para realizar la prueba de azúcar en la orina debido a que son más convenientes y rápidos que los métodos antiguos. Normalmente después que se disuelve la tableta o el papel, cambia de color, se compara entonces con colores patrones para determinar la concentración de azúcar en la orina.
Prueba de Benedict para glucosa.
Prueba de Benedict.
Reacciones de Adición de Aldehídos y Cetonas
Una de las reacciones más comunes de un grupo carbonilo es la adición de un nucleofilo para formar un compuesto de adición carbonílico tetraédrico. El átomo de carbono es altamente electrofíllico debido a la carga positiva que soporta y también por su abilidad para acomodar en nuevo enlace por la ruptura del enlace π. A estas reacciones se les llama comúnmente como reacciones de adición nucleofílica.
Una segunda reacción se produce en el grupo carbonilo cuando este se protona formando un grupo hidroxilo -OH. Esta protonación hace que el carbono carbonílico quede más deficiente en electrones por lo que puede ser atacado por un nucleófilo con mayor facilidad.
Mecanismo de una reacción de adición en una cetona.
Formación de Hemiacetales y Hemicetales
Los alcoholes (ROH) se adicionan al grupo carbonilo para producir hemiacetales y hemicetales.
Formación de un hemiacetal
Formación de un hemicetal
Estabilidad de hemiacetales.
Atención!
En la práctica, los hemiacetales son muy inestables para ser aislados. Cuando se alcanza el equilibrio, sólo hay una pequeña cantidad de hemiacetal..Formación de Acetales y Cetales
Si se agrega una pequeña cantidad de ácido a la reacción entre un alcohol con un aldehído o cetona, el hemiacetal o hemicetal formado inicialmente es convertido en un acetal o cetal en una reacción de sustitución.
Formación de un acetal