Instrucciones
Usted tiene las siguientes opciones en este simulador para moléculas pequeñas tanto inorgánicas como orgánicas.
- En la parte superior, aparecen los botones 2D y 3D para que pueda observar el modelo en dos o tres dimensiones.
- A continuación se presenta el modelo en dos o tres dimensiones.
- "Search" puede ser utilizado para buscar alguna molécula, escribiendo el nombre en inglés, por ejemplo al escribir, sulphuric acid (ácido sulfúrico).
- Color de fondo, sirve seleccionar el color del fondo del modelo en tres dimensiones.
- Acercar +, acerca el modelo.
- Acercar -, aleja el modelo.
- Girar X, Y, Z, para girar el modelo en tres dimensiones en los ejes x, y, z.
- Alambres, varillas y pelotas y varillas, para cambiar el modelo en tres dimensiones en esas representaciones.
- Energía, aparce en la parte superior la energía de la molécula en kJ/mol o kcal/mol.
- Minmizar por MMFF94, normalmente las estructuras iniciales que se crean en los simuladores poseen energías mucho mayores a las que tendría un objeto real, por esta razón, se utilizan algoritmos para calcular las posiciones y fuerzas originales, con el objetivo de minimizarlas y que sean más realistas.
- Arrastrar Minimizar, usted puede arrastrar un átomo, soltarlo y entonces el sistema hace un cálculo de minimización de energía.
- Simetría, muestra los planos de simetría en la molécula.
- Editar, puede editar la molécula agragando o quitando átomos y enlaces.
- Superficie VDW, la superficie de van der Waals de una molécula es una representación abstracta o modelo de esa molécula, que ilustra dónde, en términos muy generales, podría haber una superficie para la molécula en función de los cortes duros de los radios de van der Waals para átomos individuales, y representa una superficie a través de la cual la molécula podría concebirse interactuando con otras moléculas.
- PEM es el mapa de potencial electrostático.
- Tetraedros, para el caso que exista alguna átomo tetraédrico.
- Dipolos enlaces, para ver el los dipolos de todos los enlaces.
- Dipolo molecular, para ver el momento dipolar resultante de toda la molécula.
- Hibridación sp, sp2 y sp3, para ver la hibridacion del átomo de carbono.
- C quiral (nomenclatura R/S) y E/Z para isomería geométrica en alquenos, los descriptores R/S permiten indicar en un compuesto orgánico la configuración (la disposición espacial de los sustituyentes) de un carbono o centro quiral, estereocentro o centro estereogénico, que es el caso de un átomo de carbono con cuatro sustituyentes diferentes. Se añade R o S entre paréntesis como prefijo delante del nombre de la molécula orgánica. En caso de ser más de uno el centro estereogénico, separados por coma se indica el descriptor R o S de cada uno, precedido del número o localizador que identifica su posición.
- Invertir R/S, para cambiar la quiralidad.
- Nomenclatura E/Z en Alquenos, el sistema tradicional para nombrar los isómeros geométricos de un alqueno, en el que los mismos grupos están dispuestos de manera diferente, es nombrarlos como cis o trans. Sin embargo, es fácil encontrar ejemplos donde el sistema cis-trans no se aplica fácilmente.
- N electrones, O electrones y S electrones, para ver los electrones libres del nitrógeno, oxígeno y azufre.
- C primario, C secundario, C terciario, C cuaternario, identifica la clasificación de los átomos de carbono.
- Dadores y aceptores de puentes de hidrógeno, señala los átomos que pueden dar o aceptar puentes de hidrógeno
- Botón 2D, cuando escoge el botón 2D, la aplicación tiene su propio menú y quedan inhabilitados todos los botones 3D.
Ácidos Carboxílicos y Ésteres
La propiedad química más importante de los ácidos carboxílicos, que es otro grupo de compuestos orgánicos que contienen el grupo carbonilo, es su acidez. Además, los ácidos carboxílicos forman numerosos derivados importantes, entre ellos los ésteres, amidas, etc.
El grupo funcional de un ácido carboxílico es el grupo carboxilo, llamado así porque está formado por un grupo carbonilo y un grupo hidroxilo. A continuación se incluye una estructura de Lewis para el grupo carboxilo y también tres representaciones del mismo:
Grupo Carboxilo
En la imagen superior está representada la estructura general del ácido carboxílico. La cadena lateral R puede ser de cualquier longitud o poseer todo tipo de sustituyentes.
El átomo de carbono tiene hibridación sp2, lo que le permite aceptar un doble enlace y generar de enlaces de aproximadamente 120°.
Puesto que el átomo de oxígeno es más electronegativo que el átomo de carbono, cada enlace carbono-oxígeno en el grupo carboxilo es polar. Cada átomo de oxígeno tiene una carga parcialmente negativa representada con color rojo, y el átomo de carbono tiene una carga parcialmente positiva.
¡Atención!
Simulador de polaridad del ácido acético
Formación de Puentes de Hidrógeno
Puesto que el átomo de hidrógeno está unido a un átomo de oxígeno en el grupo -OH, el grupo carboxilo se puede unir por medio del hidrógeno a otras moléculas de ácido o a moléculas de agua en solución.
Al observar los datos de solubilidad, el hecho de que los ácidos carboxílicos de menor masa puedan formar enlaces de hidrógeno , explica su miscibilidad en agua.
Tanto los ácidos carboxílicos como los alcoholes tienen enlaces de hidrógeno entre sus moléculas; sin embargo, los ácidos carboxílicos tienen puntos de ebullición mucho más altos que los alcoholes. Por ejemplo, el 1-hexanol, cuya molécula tiene la misma masa molecular que el ácido valérico, tiene un punto de ebullición de 157° C, 30° C menos que el punto de ebullición del ácido valérico. Una diferencia tan amplia en los puntos de ebullición se debe a la formación de un dímero del ácido valérico. Un dímero es una molécula que se produce cuando se combinan dos moléculas del mismo tipo. El dímero del ácido valérico se produce cuando dos de sus moléculas se unen por medio de enlaces de hidrógeno.
Acidez de los Ácidos Carboxílicos
Cuando el ácido acético, CH3CH2COOH, se mezcla con agua, algunas de sus moléculas se ionizan y producen iones acetato, CH3CH2COO- e iones hidrógeno H+.
Las sustancias que contribuyen con iones hidrógeno al agua, se clasifican como ácidos. Comparados con los demás grupos orgánicos, los ácidos carboxílicos son los compuestos más ácidos, pero comparados con los ácidos inorgánicos, los ácidos carboxílicos son ácidos mucho más débiles. Casi todos los ácidos carboxílicos están ionizados entre un 2 y un 3%. El HCl y el HNO3 están ionizados casi en un cien por ciento.
La acidez de los ácidos orgánicos se explica en términos de la estabilidad del anión que se produce después de que ocurre la ionización. Cuando el ácido carboxílico dona un ion hidrógeno, produce un anión estabilizado por resonancia; este se denomina anión carboxilato:
La resonancia se produce cuando se deslocalizan los electrones de una molécula. Si una molécula presenta resonancia, el enlace real dentro de dicha molécula se representa mejor por el promedio de todas las estructuras de resonancia . Para el anión carboxilato, la mejor representación es la siguiente:
Esta estructura del anión carboxilato muestra que la carga negativa está repartida entre un átomo de carbono y dos átomos de oxígeno en lugar de estar localizada en un átomo de oxígeno.
Los ácidos carboxílicos son neutralizados por bases para producir una sal y agua. Si el ácido acético, CH3COOH, y el hidróxido de sodio, NaOH, se combinan, se producen el acetato de sodio, una sal y agua.
El (ácido 3-oxobutanoico) y su producto de reducción, el , se sintetizan en el hígado a partir de la , un producto del metabolismo de los ácidos grasos y ciertos aminoácidos. De manera general, el ácido 3-hidroxibutanoico y el ácido 3-oxobutanoico se conocen como cuerpos cetónicos. La concentración de cuerpos cetónicos en la sangre de un ser humano saludable y bien alimentado es aproximadamente 0.01 mM/L.
Acetil Coenzima A
Sin embargo, las personas que sufren de inanición o diabetes mellitus, presentan concentraciones de cuerpos cetónicos que aumentan hasta 500 veces del valor normal. En estas condiciones, la concentración de ácido acetoacético aumenta hasta el punto en donde experimenta una descarboxilación espontánea para formar acetona y dióxido de carbono. La acetona no es metabolizada por los seres humanos y se excreta a través de los riñones y pulmones. El "aliento dulzón" característico de los pacientes diabéticos graves, se debe al olor de la acetona.