Instrucciones
Usted tiene las siguientes opciones en este simulador para moléculas pequeñas tanto inorgánicas como orgánicas.
- En la parte superior, aparecen los botones 2D y 3D para que pueda observar el modelo en dos o tres dimensiones.
- A continuación se presenta el modelo en dos o tres dimensiones.
- "Search" puede ser utilizado para buscar alguna molécula, escribiendo el nombre en inglés, por ejemplo al escribir, sulphuric acid (ácido sulfúrico).
- Color de fondo, sirve seleccionar el color del fondo del modelo en tres dimensiones.
- Acercar +, acerca el modelo.
- Acercar -, aleja el modelo.
- Girar X, Y, Z, para girar el modelo en tres dimensiones en los ejes x, y, z.
- Alambres, varillas y pelotas y varillas, para cambiar el modelo en tres dimensiones en esas representaciones.
- Energía, aparce en la parte superior la energía de la molécula en kJ/mol o kcal/mol.
- Minmizar por MMFF94, normalmente las estructuras iniciales que se crean en los simuladores poseen energías mucho mayores a las que tendría un objeto real, por esta razón, se utilizan algoritmos para calcular las posiciones y fuerzas originales, con el objetivo de minimizarlas y que sean más realistas.
- Arrastrar Minimizar, usted puede arrastrar un átomo, soltarlo y entonces el sistema hace un cálculo de minimización de energía.
- Simetría, muestra los planos de simetría en la molécula.
- Editar, puede editar la molécula agragando o quitando átomos y enlaces.
- Superficie VDW, La superficie de van der Waals de una molécula es una representación abstracta o modelo de esa molécula, que ilustra dónde, en términos muy generales, podría haber una superficie para la molécula en función de los cortes duros de los radios de van der Waals para átomos individuales, y representa una superficie a través de la cual la molécula podría concebirse interactuando con otras moléculas.
- PEM es el mapa de potencial electrostático.
- Tetraedros, para el caso que exista alguna átomo tetraédrico.
- Dipolos enlaces, para ver el los dipolos de todos los enlaces.
- Dipolo molecular, para ver el momento dipolar resultante de toda la molécula.
- Hibridación sp, sp2 y sp3, para ver la hibridacion del átomo de carbono.
- Anillo Aromático, detecta anillos aromáticos en la estructura.
- C quiral (nomenclatura R/S) y E/Z para isomería geométrica en alquenos, los descriptores R/S permiten indicar en un compuesto orgánico la configuración (la disposición espacial de los sustituyentes) de un carbono o centro quiral, estereocentro o centro estereogénico, que es el caso de un átomo de carbono con cuatro sustituyentes diferentes. Se añade R o S entre paréntesis como prefijo delante del nombre de la molécula orgánica. En caso de ser más de uno el centro estereogénico, separados por coma se indica el descriptor R o S de cada uno, precedido del número o localizador que identifica su posición.
- Invertir R/S, para cambiar la quiralidad.
- Nomenclatura E/Z en Alquenos, el sistema tradicional para nombrar los isómeros geométricos de un alqueno, en el que los mismos grupos están dispuestos de manera diferente, es nombrarlos como cis o trans. Sin embargo, es fácil encontrar ejemplos donde el sistema cis-trans no se aplica fácilmente.
- N electrones, O electrones y S electrones, para ver los electrones libres del nitrógeno, oxígeno y azufre.
- C primario, C secundario, C terciario, C cuaternario, identifica la clasificación de los átomos de carbono.
- Dadores y aceptores de puentes de hidrógeno, señala los átomos que pueden dar o aceptar puentes de hidrógeno
- Botón 2D, cuando escoge el botón 2D, la aplicación tiene su propio menú y quedan inhabilitados todos los botones 3D.
Ácidos Nucleicos
Empaquetamiento
El ADN no se halla sólo, se encuentra unido a proteínas, las cuales pueden ser histonas o no histonas. La unión del ADN a estas proteínas se denomina cromatina.
Histona
Se unen al ADN, ayudan a dar su forma a los cromosomas y ayudan a controlar la actividad de los genes. La mayor parte del ADN se encuentra en el interior del núcleo de la célula, donde forma los cromosomas. Los cromosomas contienen proteínas llamadas histonas que se unen al ADN.
Las no histonas son proteínas reguladoras de la expresión génica o proteínas con habilidad de unirse al ADN para facilitar o realizar la replicación, transcripción, etc. Las histonas son únicas en los eucariotas y están presentes en enormes cantidades. Hay cinco tipos y se dividen en 2 grupos: las histonas del nucleosoma y las histonas H1.
Histona H2A
Cromatina
Sustancia que se encuentra en el núcleo de la célula formando el material cromosómico durante la interfase, está compuesto de ADN unido a proteínas.
Nucleosoma
Es una estructura que constituye la unidad fundamental de la cromatina, que es la forma de organización del ADN en las células eucariotas. Están formados por un octámero de proteínas histonas y aproximadamente 147 pares de bases nitrogenadas de ADN.
Ambos tipos se caracterizan por ser proteínas con un alto número de cargas + provistas por los aminoácidos de lisina y arginina (carga + le permite unirse al ADN). Pocas veces se disocian del genoma. Las histonas del nucleosoma son pequeñas (102-135 aminoácidos) y se denomina H2A, H2B, H3, y H4.
Las histonas H1, son más grandes (220 aminoácidos). El nucleosoma es un octámero de proteínas histónicas alrededor del cual el ADN se enrolla 2 veces. Los nucleosomas a su vez son empacados juntos por la Histona H1.
La estructura terciaria de las moléculas de ADN es la forma que éstas se doblan y se tuercen. Muy pocas moléculas de ADN son hélices rectas. La mayoría de las moléculas están enrolladas y torcidas.
En procariotas, así como en las mitocondrias y cloroplastos, el ADN se presenta en forma circular, en la que la doble hélice se cierra por sus extremos. Este ADN circular puede presentar diversos grados de superenrrollamiento.
En virus, el ADN puede presentarse como una doble hélice cerrada, como una doble hélice abierta o simplemente como una única hebra lineal.
La macromolécula de ADN puede adoptar una forma lineal o una forma circular cerrada. Gran parte del ADN de las bacterias y de los virus, el ADN mitocondrial y el de los plásmidos, adoptan formas circulares. Aunque en general se acepta que el ADN nuclear de las células eucariotas (células de los seres superiores con núcleos bien definidos) se halla organizado en largas unidades de cadena abierta o lineal, una importante cantidad de datos experimentales tiende a modificar este concepto. En el núcleo en interfase (período entre dos divisiones celulares) gran parte de la fibrilla de cromatina se halla organizada en forma de múltiples bucles o asas. Los dos extremos de cada una de estas asas se unen a estructuras de la membrana nuclear denominadas complejos de poro nuclear y se comportan, por lo tanto, como una unidad circular cerrada. Dado que cada una de las asas contiene ADN, queda probado que el núcleo de la célula eucariota aloja múltiples unidades de ADN circular.
El ADN circular puede encontrarse en forma relajada o en forma superenrollada. En la forma relajada, el círculo se halla desplegado sobre un único plano; en la forma superenrollada el contorno del círculo va girando sobre sí mismo de manera tal que adquiere profundidad.
Las dos formas de ADN circular pueden visualizarse en el microscopio electrónico como círculos relajados o superenrollados. Además, pueden identificarse por electroforesis o por centrifugación (separación de partículas en suspensión coma ayuda de un campo eléctrico o de un campo gravitacional respectivamente). En estos casos, la estructura compactada del ADN superenrollado aumenta su migración electroforética y su velocidad de sedimentación, lo cual permite diferenciarlo del ADN circular relajado o del ADN lineal.