Enlace Químico Covalente Múltiple


Instrucciones

  • A continuación se describen las diferentes formas de representación de la molécula utilizando Jsmol.
  • Haga clic en la (+) del cuadro verde para extenderlo y poder leer la descripción.

  • Para cerrar el cuadro, haga clic en el signo (-).

Instrucciones

Usted tiene las siguientes opciones en este simulador para moléculas pequeñas tanto inorgánicas como orgánicas.

  • En la parte superior, aparecen los botones 2D y 3D para que pueda observar el modelo en dos o tres dimensiones.
  • A continuación se presenta el modelo en dos o tres dimensiones.
  • "Search" puede ser utilizado para buscar alguna molécula, escribiendo el nombre en inglés, por ejemplo al escribir, sulphuric acid (ácido sulfúrico).
  • Color de fondo, sirve seleccionar el color del fondo del modelo en tres dimensiones.
  • Acercar +, acerca el modelo.
  • Acercar -, aleja el modelo.
  • Girar X, Y, Z, para girar el modelo en tres dimensiones en los ejes x, y, z.
  • Alambres, varillas y pelotas y varillas, para cambiar el modelo en tres dimensiones en esas representaciones.
  • Energía, aparce en la parte superior la energía de la molécula en kJ/mol o kcal/mol.
  • Minmizar por MMFF94, normalmente las estructuras iniciales que se crean en los simuladores poseen energías mucho mayores a las que tendría un objeto real, por esta razón, se utilizan algoritmos para calcular las posiciones y fuerzas originales, con el objetivo de minimizarlas y que sean más realistas.
  • Arrastrar Minimizar, usted puede arrastrar un átomo, soltarlo y entonces el sistema hace un cálculo de minimización de energía.
  • Simetría, muestra los planos de simetría en la molécula.
  • Editar, puede editar la molécula agragando o quitando átomos y enlaces.
  • Superficie VDW, la superficie de van der Waals de una molécula es una representación abstracta o modelo de esa molécula, que ilustra dónde, en términos muy generales, podría haber una superficie para la molécula en función de los cortes duros de los radios de van der Waals para átomos individuales, y representa una superficie a través de la cual la molécula podría concebirse interactuando con otras moléculas.
  • Photo
  • PEM es el mapa de potencial electrostático.
  • Carga parcial calcula la carga parcial de cada átomo.
  • Tetraedros, para el caso que exista alguna átomo tetraédrico.
  • Dipolos enlaces, para ver el los dipolos de todos los enlaces.
  • Dipolo molecular, para ver el momento dipolar resultante de toda la molécula.
  • Hibridación sp, sp2 y sp3, para ver la hibridacion del átomo de carbono.
  • Anillo aromático, muestra los anillos aromáticos.
  • Heteroátomo, muestra los heteroátomos en heterociclos.
  • C quiral (nomenclatura R/S) y E/Z para isomería geométrica en alquenos, los descriptores R/S permiten indicar en un compuesto orgánico la configuración (la disposición espacial de los sustituyentes) de un carbono o centro quiral, estereocentro o centro estereogénico, que es el caso de un átomo de carbono con cuatro sustituyentes diferentes. Se añade R o S entre paréntesis como prefijo delante del nombre de la molécula orgánica. En caso de ser más de uno el centro estereogénico, separados por coma se indica el descriptor R o S de cada uno, precedido del número o localizador que identifica su posición.
  • Invertir R/S, para cambiar la quiralidad.
  • Nomenclatura E/Z en Alquenos, el sistema tradicional para nombrar los isómeros geométricos de un alqueno, en el que los mismos grupos están dispuestos de manera diferente, es nombrarlos como cis o trans. Sin embargo, es fácil encontrar ejemplos donde el sistema cis-trans no se aplica fácilmente.
  • N electrones, O electrones y S electrones, para ver los electrones libres del nitrógeno, oxígeno y azufre.
  • C primario, C secundario, C terciario, C cuaternario, identifica la clasificación de los átomos de carbono.
  • Dadores y aceptores de puentes de hidrógeno, señala los átomos que pueden dar o aceptar puentes de hidrógeno
  • Botón 2D, cuando escoge el botón 2D, la aplicación tiene su propio menú y quedan inhabilitados todos los botones 3D.

Enlace Covalente

En el caso de las moléculas de Cl2 e H2, únicamente se comparte un par de electrones entre los dos núcleos; esto se conoce como un enlace covalente sencillo. En otras moléculas se comparte más de un par de electrones entre dos núcleos y estos enlaces se denominan enlaces covalentes múltiples. Podemos encontrar dos tipos de enlaces múltiples: enlaces covalente dobles y enlaces covalentes triples.

Enlace Covalente Doble

Un doble enlace se forma cuando se comparten cuatro electrones entre dos átomos. Por ejemplo, en la molécula de (O2). Cada O tiene la siguiente configuración electrónica:

O 1s2 2s2 2p4

Para que un átomo de oxígeno sea estable debe adquirir la configuración electrónica del gas noble posterior (Neón). Ya que el oxígeno tiene seis electrones en la capa de valencia, se completa el octeto cuando se comparten cuatro electrones que forman un doble enlace.

Photo

también se puede escribir como:

Photo Photo

Enlace Covalente Triple

La molécula de , N2 esta constituida por un triple enlace ya que ambos nitrógenos comparten seis electrones, siendo éste un ejemplo de un enlace covalente múltiple.

Una molécula diatómica de N2 posee un enlace covalente triple, es decir, se comparte seis electrones en un enlace covalente triple. La configuración electrónica de un átomo de nitrógeno es:

N 1s2 2s2 2p3

Para que un átomo de N obtenga la estabilidad de una configuración de gas noble, debe compartir tres de sus electrones con otro átomo de N. Los cinco electrones más los tres electrones compartidos le dan a cada átomo de N la configuración del gas noble Ne.

Photo

también se puede escribir como:

Photo

Uno de los enlaces más fuertes que se conocen es el triple enlace en el N2. Un enlace múltiple es más fuerte que uno simple o uno doble entre los mismos dos átomos.

No todos los átomos de los no metales pueden formar enlaces covalentes múltiples. El O, N, C, P y S son ejemplos de átomos que con más frecuencia forman enlaces múltiples. Los átomos como el H o los halógenos únicamente comparten un electrón; en consecuencia, éstos no forman enlaces covalentes múltiples.

Película de formación de orbital molecular πpx